

# Nonparametric Functional Estimation and Related Topics

Edited by

George Roussas

**NATO ASI Series** 

#### ON A PROBLEM IN SEMIPARAMETRIC ESTIMATION

S. R. JAMMALAMADAKA and X. WAN Department of Statistics and Applied Probability University of California Santa Barbara, CA 93106 U.S.A.

ABSTRACT. The estimation problem in a semiparametric model , namely, the generalized Lehmann alternative model, is considered here. Suppose that two independent samples  $X_1,...,X_m$  and  $Y_1,...,Y_n$  with d.f.'s F and G, respectively, are observed. Assume that  $G(\cdot) = H(F(\cdot);\theta)$ , where the form of the function H is known, but F and the parameter  $\theta$  are unknown. The problem is to estimate  $\theta$  in the presence of the nuisance function F. We give two methods of estimating the parametric component of the model based on sample quantiles and the Mann-Whitney statistic. The asymptotic variances of these estimators are compared.

#### 1. Introduction

Semiparametric models have become an active research topic in recent years. In such a model, there exist both parametric and nonparametric components. For example, Begun, Hall, Huang and Wellner(1983) study the model in which  $X_1,...,X_n$  are i.i.d. with density  $f=f(\cdot;\theta,g)$  with respect to Lebesgue measure  $\mu$  on the real line, where  $\theta$  is a real number and g belongs to a class of densities sufficiently small that  $\theta$  is identifiable. There is considerable literature on the well known Lehmann alternatives(Lehmann(1953)). See, for example, Young(1973), Brooks(1974) and Savage(1980).

Fukui and Miura(1988) consider the estimation problem in the following two sample semiparametric model. Let  $X_1,...,X_m$  be i.i.d. random variables(r.v.'s) with distribution function(d.f.) F and let  $Y_1,...,Y_n$  be i.i.d. r.v.'s with d.f.  $G(\cdot) = H(F(\cdot);\theta)$ , where  $\{H(x;\theta)\colon \theta\in (a,b)\}$  is a known family of d.f.'s on [0,1], while the true value of the parameter  $\theta$  as well as the function F are unknown. It is desired to estimate  $\theta$  in the presence of the nuisance function F. This semiparametric model is known as the generalized Lehmann alternative model since Lehmann alternative is a special case of this corresponding to  $H(x;\theta) = x^{\theta}$ . We now briefly review the work of Fukui and Miura (1988):

Since  $G(x) = H(F(x); \theta)$ , then  $F(x) = H^{-1}(G(x); \theta)$ . Let  $D_{mn}(\theta)$  denote the Kolmogorov-Smirnov distance

$$D_{mn}(\theta) = \sup_{x} \left| F_{m}(x) - H^{-1}(G_{n}(x); \theta) \right|$$

where  $F_m(x)$  and  $G_n(x)$  are the empirical d.f.'s of F and G, respectively. The minimum-distance estimator of  $\theta$  is defined as the value  $\hat{\theta}$  of  $\theta$ , which minimizes  $D_{mn}(\theta)$ . Fukui and Miura give the asymptotic distribution of this  $\hat{\theta}$ .

Theorem (Fukui and Miura). If m+n=N tends to infinity such that  $m/N\to\lambda$ , where  $0<\lambda<1$ , then

$$\begin{split} & P\{ \ N^{1/2}(\hat{\theta} - \theta_0) \leq y \ \} \\ & \to P\{ \ \sup_{t} \left[ \frac{B_1(t)}{\lambda^{1/2}} - \frac{B_2(H(t;\theta_0))}{(1-\lambda)^{1/2}h_t(t;\theta_0)} + \frac{h_{\theta}(t;\theta_0)}{h_t(t;\theta_0)} \times y \ ] \\ & + \inf_{t} \left[ \frac{B_1(t)}{\lambda^{1/2}} - \frac{B_2(H(t;\theta_0))}{(1-\lambda)^{1/2}h_t(t;\theta_0)} + \frac{h_{\theta}(t;\theta_0)}{h_t(t;\theta_0)} \times y \ ] \geq 0 \ \} \end{split}$$

where

 $m^{1/2}[F_m(x)-F(x)]\to B_1(F(x)), \qquad n^{1/2}[G_n(x)-G(x)]\to B_2(G(x)),$   $B_1(t)$  and  $B_2(t)$  are independent Brownian bridges,  $h_t(t;\theta)$  and  $h_\theta(t;\theta)$  are the

partial derivatives of  $H(t;\theta)$  with respect to t and  $\theta$ , respectively. #

This limiting distribution is very complicated and does not seem to have a normal approximation. Although Fukui and Miura give an algorithm to compute

this  $\theta$ , it seems that a great deal of computation needs to be done before  $\theta$  can finally be found.

Our aim in this paper is to develop some methods which will provide estimators of  $\theta$  involving less computational work while providing consistent estimation with limiting normal distributions.

These results can also be applied to test the hypothesis  $H_O$ :  $\theta = \theta_O$ . Notice that in many cases there exists a  $\theta_O \in \Theta$ , such that  $H(x; \theta_O) = x$ . Thus  $G(x) = H(F(x); \theta_O) = F(x)$ , so that it covers the usual two sample problem of testing  $H_O$ : F = G as a special case of testing  $H_O$ :  $\theta = \theta_O$ .

Although our results focus on a scalar  $\theta$ , some results can be readily extended to the case when  $\theta$  is a vector. The following examples illustrate some applications of the generalized Lehmann alternative models.

Example 1.1. The idea of proportional hazards was introduced by Cox(1972). If

 $X_1,...,X_n$  are independent r.v.'s with  $X_i$  having d.f. G(x)=1-[1-F(x)] i, i=1,...,n, then the ratio  $r(x,\theta_i)/r(x,\theta_j)$  does not depend on x, where  $r(x,\theta)=G'(x)/[1$ -G(x)] is the hazard function. This condition often appears to be at least approximately satisfied in many biological applications.

**Example 1.2.** Consider a mixture problem in which the d.f. of the observations is a linear combination of two d.f.'s F(x) and G(F(x)), i.e.,

$$H(F(x);\theta) = (1-\theta) G(F(x)) + \theta F(x), \qquad 0 \le \theta \le 1.$$

Assume that F is unknown but  $G(\cdot)$  is known. It is often important to estimate the mixing parameter  $\theta$ . If G also depends on an unknown parameter, then this is an example of a model with vector parameter.

This paper is arranged as follows. Section 2 contains results about an estimator  $\hat{\theta}$  of  $\theta$  obtained by matching the pth quantiles of the two samples. Section 3 deals with an estimator  $\hat{\theta}^*$  based on the Mann-Whitney statistic. In section 4, comparison is made between  $\hat{\theta}$  and  $\hat{\theta}^*$  through examples. We will make the following assumptions throughout:

Assumption A. F(x) is an absolutely continuous d.f. on  $R^1$ .  $H(x;\theta)$  is a d.f. on [0,1] for every  $\theta = (\theta_1, ..., \theta_k) \in \Theta$   $\subset \mathbb{R}^k$  such that

$$\frac{\partial H}{\partial x} > 0$$
 and  $\frac{\partial H}{\partial \theta_i} \neq 0$ .

The

nizes

the

ve a

pute can

tors

with that

hus

n of

d to is of

). If

In the case when  $\theta$  is a real number, we may assume without loss of generality that  $\frac{\partial H}{\partial \theta} < 0$  so that  $h(x;\theta)$  is a strictly decreasing function of  $\theta$ . Furthermore, assume that  $\Theta = (a,b)$ , where a and/or b may be infinity. Assume that H(x;a+)=1 and H(x;b-)=0 for any x, 0 < x < 1. Assume that there exists a  $\lambda$ ,  $0 < \lambda < 1$ , such that  $m/N \to \lambda$  as  $m \to \infty$ ,  $n \to \infty$ , where N=m+n is the total of the two sample sizes.

### 2. Estimation Based On Sample Quantiles

Let  $X_1' < \cdots < X_m'$  and  $Y_1' < \cdots < Y_n'$  be the order statistics of the X and Y samples, respectively. For a fixed positive number p,  $0 , the sample pth quantile of the Y sample is defined as <math>Y_{\lfloor np \rfloor + 1}$ . Let  $\xi_p$  denote the population pth quantile of Y, then  $G(\xi_p) = H(F(\xi_p); \theta) = p$ . Substituting estimators  $Y_{\lfloor np \rfloor + 1}$  for  $\xi_p$ , and the empirical d.f.  $F_m$  for F, we may write, approximately,  $H(F_m(Y_{\lfloor np \rfloor + 1}); \theta) = p$ . Let  $X_k'$  be the largest observation in the X sample such

that  $X_{k} \leq Y_{\lfloor np \rfloor+1}$ . When N=m+n is large, we would expect  $F_{m}(Y_{\lfloor np \rfloor+1})$  to be very close to  $F_{m}(X_{k}) = k/m$ . Hence, our estimator  $\hat{\theta}$  is the solution to the equation

$$H(k/m;\theta) = p (2.1)$$

By Assumption A,  $\frac{\partial H}{\partial \theta}$  < 0 and H(x;a+)=1, H(x;b-)=0. This guarantees the existence and uniqueness of  $\hat{\theta}$ . For brevity we write  $Y_n^*$  for  $Y_{[np]+1}$ . Let

 $\zeta_{\rm p} = {\rm F}(\xi_{\rm p})$  and let  ${\rm H_2^{-1}}(z,p)$  be the solution to the equation  ${\rm H}(z;\theta) = p$  with respect to  $\theta$  for all z and p, such that 0 < z < 1,  $0 . Let <math>{\rm h_1}(z;\theta)$  and  ${\rm h_2}(z;\theta)$  denote the partial derivatives of  ${\rm H}(z;\theta)$  with respect to z and  $\theta$ , respectively. Thus  $\hat{\theta} = {\rm H_2^{-1}}({\rm F_m}({\rm Y_n^*}),p)$  and

$$\begin{split} & N^{1/2}(\hat{\theta} - \theta_{o}) = N^{1/2}[H_{2}^{-1}(F_{m}(Y_{n}^{*}), p) - H_{2}^{-1}(\zeta_{p}, p)] \\ &= N^{1/2} \frac{\partial}{\partial x} H_{2}^{-1}(x, p) \Big|_{x = \zeta_{p}} \cdot [F_{m}(Y_{n}^{*}) - \zeta_{p}] + o_{p}(1) \\ &= -(\frac{N}{m})^{1/2} \frac{h_{1}(\zeta_{p}; \theta_{o})}{h_{2}(\zeta_{p}; \theta_{o})} \cdot m^{-1/2} \sum_{i=1}^{m} [I(X_{i} \leq Y_{n}^{*}) - \zeta_{p}] + o_{p}(1). \end{split}$$
 (2.2)

The last equality indicates that it suffices to find the limiting distribution of

$$A_{N} = m^{-1/2} \sum_{i=1}^{m} [I(X_{i} \leq Y_{n}^{*}) - \zeta_{p}].$$

Applying the probability integral transformation F on both samples,  $X_1,...,X_m$  become  $U_1,...,U_m$ , an i.i.d. sample from the uniform distribution on [0,1], and  $Y_1,...,Y_n$  become  $Z_1,...,Z_n$ , an i.i.d. sample with d.f.  $H(z;\theta)$ . Although the values of  $U_1,...,U_m$  and  $Z_1,...,Z_n$  are unknown because F is unknown, the order relations in the combined samples remain the same since F is strictly increasing. Thus  $A_N$  can also be written as

$$\mathbf{A_N} = \mathbf{m}^{-1/2} \sum_{i=1}^{m} [\ \mathbf{I}(\mathbf{U_i} \leq \mathbf{Z_n^*}) - \boldsymbol{\zeta_p}\ ]$$

where 
$$Z_n^* = Z_{[np]+1}^*$$
.

to be to the

(2.1)

es the

espect lenote

(2.2)

..,X<sub>m</sub> |, and values ations

is  $A_N$ 

Lemma 1. Let  $\{X_i, i=1,...,n\}$  be a sequence of continuous r.v.'s with continuous probability density function f(x). Let  $\mu_p$  denote the population pth quantile and  $X_n^*$  the sample pth quantile. Suppose that  $\mu_p$  is unique with  $f(\mu_p)$  positive. Then the sequence of the random variables  $n^{1/2}(X_n^*-\mu_p)$  has asymptotically a normal distribution with mean zero and variance  $\tau^2$ , where

$$\tau^2 = \frac{p(1-p)}{[f(\mu_p)]^2} . \qquad \#$$

Lemma 2. Under Assumption A, if  $\theta$  is the true value of the parameter, then  $A_N$  has a limiting normal distribution with mean zero and variance  $\tau_0^2$ , where

$$\tau_{\rm O}^2 = \zeta_{\rm p} - \zeta_{\rm p}^2 + \frac{\lambda \, \mathrm{p}(1-\mathrm{p})}{\left(1-\lambda\right) \left[\mathrm{h}_1(\zeta_{\rm p};\theta)\right]^2} \ . \label{eq:total_control}$$

Proof: Define

$$B_{N} = m^{-1/2} \sum_{i=1}^{m} [I(U_{i} \leq \zeta_{p}) - \zeta_{p}] + m^{1/2} (Z_{n}^{*} - \zeta_{p}).$$

Since the first term of  $B_N$  is the sums of i.i.d. r.v.'s, by the Lindeberg-Levy central limit theorem, it has an asymptotic normal distribution with mean zero and variance  $\tau_1^2 = \zeta_p(1-\zeta_p)$ . By Lemma 1, the second term of  $B_N$  has a limiting normal distribution with mean zero and variance

$$\tau_2^2 = \frac{\lambda \ \mathrm{p}(1-\mathrm{p})}{(1-\lambda) \left[\mathrm{h}_1(\zeta_\mathrm{p};\theta)\right]^2} \ .$$

Since  $U_i$  and  $Z_n^*$  are independent, the two limiting normal distributions are also independent of each other. Hence  $B_N$  has a limiting normal distribution with mean zero and variance  $\tau_0^2$ . It can be verified that  $E(A_N^-B_N^-)^2 \to 0$ . So that  $A_N^-$  and  $B_N^-$  have the same asymptotic distribution.

Now from Lemma 2 and (2.2), we obtain

Theorem 1. Assume  $\theta$  is the true value of the parameter, then under Assumption A, the asymptotic distribution of the sequence of random variables  $N^{1/2}(\hat{\theta}-\theta)$  has

a normal distribution with mean zero and variance  $\sigma_0^2$ , where

$$\sigma_{0}^{2} = [h_{2}(\zeta_{p};\theta)]^{-2} \left[ \frac{h_{1}^{2}(\zeta_{p};\theta) \zeta_{p}(1-\zeta_{p})}{\lambda} + \frac{p(1-p)}{1-\lambda} \right]. \tag{2.3}$$

If  $\hat{\zeta}_p$  is the pth quantile of H with this  $\hat{\theta}$  substituted for  $\theta$ , i.e.,  $\hat{\zeta}_p$  is the solution of

 $\mathbf{p} = \mathbf{H}(\hat{\boldsymbol{\zeta}}_{\mathbf{D}}; \hat{\boldsymbol{\theta}})$ 

and

$$\hat{\sigma}^2 = [ h_2(\hat{\zeta}_p; \hat{\theta}) ]^{-2} [ \frac{h_1^2(\hat{\zeta}_p; \hat{\theta}) \hat{\zeta}_p (1 - \hat{\zeta}_p)}{\lambda} + \frac{p(1-p)}{1 - \lambda} ].$$

then it is easily verified that  $N^{1/2}(\hat{\theta}-\theta)/\hat{\sigma}$  is asymptotically N(0,1). One can also use this result to obtain asymptotic confidence limits for the unknown  $\theta$ .

this result can also be used to test the hypothesis  $H: \theta = \theta_0$ . To improve the performance of the test statistic, one should minimize  $\sigma_0^2$ . (2.3) indicates that  $\sigma_0^2$  depends on the quantities p,  $\theta_0$ ,  $\lambda$  and the function  $H(x;\theta_0)$ . All those quantities except p have been specified at the time of testing. However, we can choose an optimal value  $p_0$  so that  $\sigma_0^2$  is minimized for the given values  $\theta_0$ ,  $\lambda$  and the function  $H(x;\theta_0)$ . Thus the optimal estimator and the optimal test is to use this  $p_0$  in the quantile matching method.

Example 2.1. Suppose that  $H(x; \theta) = x^{\theta}$ . Solving the equation

$$[F_m(Y_n^*)]^{\theta} = p$$

we get

$$\hat{\theta} = [\ln p] / \ln[F_m(Y_n^*)].$$

According to Theorem 1,  $Var(\hat{\theta}) = N^{-1}\sigma_0^2 + o(N^{-1})$ . To compute  $\sigma_0^2$ , we find

$$\mathbf{h_1}(\mathbf{x};\theta) = \theta \; \mathbf{x}^{\theta\text{-}1}, \qquad \quad \mathbf{h_2}(\mathbf{x};\theta) = \mathbf{x}^{\theta} \ln \mathbf{x}, \qquad \quad \boldsymbol{\mu_p} = \mathbf{p}^{1/\theta}.$$

Substituting these into (2.3), we have after some simplification

$$\sigma_{\rm O}^2 = \frac{\theta^4}{\lambda (\ln p)^2} \left[ p^{-1/\theta} - 1 + \frac{\lambda (1-p)}{(1-\lambda)p \theta^2} \right]. \tag{2.4}$$

## 3. Estimation Based on the Mann-Whitney Statistic

In section 2, the estimator  $\hat{\theta}$  is developed based on the statistic involving  $F_m(Y_n^*)$ , the value of the empirical d.f.  $F_m$  at  $Y_n^*$ . This motivates us to consider the statistic

$$W_{xy} = \frac{1}{n} \sum_{i=1}^{n} F_{m}(Y_{i}),$$

the average of the empirical d.f.  $F_m$  at all the n Y observations. By the definition of the empirical d.f.  $F_m$ ,  $W_{xy}$  can be written as

$$W_{xy} = \frac{1}{mn} \sum_{j=1}^{m} \sum_{i=1}^{n} I(X_{j} \leq Y_{i})$$

where  $I(\cdot)$  is the indicator function. Notice that  $W_{xy} = 1-W_{yx}$ , where

$$W_{yx} = \frac{1}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} I(Y_i < X_j).$$
 (3.1)

We will study the statistic  $W_{yx}$  which is known as the Mann-Whitney statistic, a special case of a U-statistic. If we apply the probability integral transformation F on both X and Y samples,  $W_{yx}$  can be expressed as

$$W_{yx} = \frac{1}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} I(Z_{i} < U_{j}).$$
 (3.2)

Let

(2.3)

ution

e the

 $\operatorname*{at}\ \sigma_{\mathrm{o}}^{2}$ 

se an I the

is po

2.4)

$$M_1(\theta) = E_{\theta}[I(Z_1 < U_1)] = \int_0^1 H(u;\theta) du$$
 (3.3)

be the expectation of  $W_{yx}$ . Under Assumption A, it is clear that  $M_1(\theta)$  is a differentiable function. Since  $W_{yx}$  is a consistent and asymptotically normal(CAN) estimator for  $M_1(\theta)$ , we propose an estimator  $\theta^*$  of  $\theta$  as

$$\theta^* = M_1^{-1}(W_{yx}). \tag{3.4}$$

As in section 2, we will study the asymptotic behavior of the random variables  $N^{1/2}(\theta^*-\theta)$  when the true value of the parameter is  $\theta$ . Using the mean value

theorem, we have, from (3.4),

$$N^{1/2}(\theta^* - \theta) = [M_1'(\theta)]^{-1} N^{1/2}[W_{yx} - M_1(\theta)] + o_p(1). \tag{3.5}$$

Define  $M_2(\theta) = P_{\theta}(Z_1 < U_1, Z_1 < U_2), M_3(\theta) = P_{\theta}(Z_1 < U_1, Z_2 < U_1).$  Using conditional probabilities,  $M_2(\theta)$  and  $M_3(\theta)$  can be expressed as

$$M_2(\theta) = 2 \int_0^1 (1-u) H(u;\theta) du$$
, (3.6)

$$M_3(\theta) = \int_0^1 H^2(u;\theta) du$$
 (3.7)

Theorem 2. Suppose that Assumption A holds. If  $\theta$  is the true value of the parameter, then the random sequence  $N^{1/2}(\theta^*-\theta)$  has an asymptotic normal distribution with mean zero and variance  $\sigma_1^2$ , where

$$\begin{split} &\sigma_1^2 = [\mathbf{M}_1'(\theta)]^{-2} \ \tau_1^2 \\ &\tau_1^2 = \frac{1}{\lambda} \ \mathbf{M}_3(\theta) + \frac{1}{1-\lambda} \ \mathbf{M}_2(\theta) - \frac{1}{\lambda(1-\lambda)} \ \mathbf{M}_1^2(\theta). \end{split} \tag{3.8}$$

Proof: From the theory of U-statistics (see for example, Lehmann(1975)), using expressions (3.3), (3.6) and (3.7) we have

$$\begin{split} \mathrm{Var}(\mathbf{W}_{\mathbf{yx}}) &= \frac{1}{\mathrm{nm}} \; \{ \; \mathbf{M}_{1}(\theta)[1\text{-}\mathbf{M}_{1}(\theta)] \, + \, (\mathrm{n-1})[\mathbf{M}_{3}(\theta)\text{-}\mathbf{M}_{1}^{2}(\theta)] \\ &+ \, (\mathrm{m-1})[\mathbf{M}_{2}(\theta)\text{-}\mathbf{M}_{1}^{2}(\theta)] \; \}. \end{split}$$

Notice that

$$\frac{m}{N} \rightarrow \lambda, \frac{n}{N} \rightarrow 1\text{-}\lambda, \text{ as } N \rightarrow_{\varpi},$$

SO

$${\rm Var} \; [{\rm N}^{1/2}({\rm W_{yx^-} \, M_1}(\theta)] \to \tau_1^2 \; .$$

It is well known that the limiting distribution of the statistic  $N^{1/2}[W_{yx} - M_1(\theta)]$  is normal with mean zero and variance  $\tau_1^2$ . Hence by (3.5), the limiting distribution of  $N^{1/2}(\theta^* - \theta_0)$  is  $N(0, \sigma_1^2)$ .

Example 3.1. Suppose that  $H(x; \theta) = x^{\theta}$ . Then

$$\begin{aligned} \mathbf{M}_{1}(\theta) &= \frac{1}{\theta+1} \;, \qquad \mathbf{M}_{2}(\theta) = \frac{2}{(\theta+1)(\theta+2)} \;, \qquad \mathbf{M}_{3}(\theta) = \frac{1}{2\theta+1} \;. \end{aligned}$$
 Hence 
$$\theta^{*} &= \left[ \mathbf{W}_{yx} \right]^{-1} \; -1 \; \text{ and } \; \mathrm{Var}(\theta^{*}) = \mathbf{N}^{-1} \sigma_{1}^{2} + \mathrm{o}(\mathbf{N}^{-1})$$
 with 
$$\sigma_{1}^{2} &= (\theta+1)^{4} \left[ \; \frac{1}{\lambda(2\theta+1)} + \frac{2}{(1-\lambda)(\theta+1)(\theta+2)} \; - \frac{1}{\lambda(1-\lambda)(\theta+1)^{2}} \; \right].$$
 (3.9)

# 4. The Comparison between $\hat{\boldsymbol{\theta}}$ and $\hat{\boldsymbol{\theta}}$ .

3.5)

Using

f the

rmal

3.8)

using

 $1^{( heta)}$ 

Between the two estimators  $\hat{\theta}$  and  $\hat{\theta}$ , we should prefer the one with smaller asymptotic variance. In Theorems 1 and 2, we have given the asymptotic variances of  $\hat{\theta}$  and  $\hat{\theta}$ , denoted by  $\sigma_0^2$  and  $\sigma_1^2$ , respectively. Furthermore, in Examples 2.1 and 3.1, we derived estimators  $\hat{\theta}$  and  $\hat{\theta}$  when  $H(x;\theta) = x^{\theta}$ . The specific expressions of  $\sigma_0^2$  and  $\sigma_1^2$  are given in (2.4) and (3.9). For a selected number of values of  $\theta$  and  $\lambda$ , we compute  $\sigma_0^2$  and  $\sigma_1^2$ . Here  $\sigma_0^2$  is the minimum variance corresponding to the optimal value of p. The results are listed in Table 4.1.

From Table 4.1, it is seen that for small values of  $\theta$ , the estimator  $\theta$  is superior to  $\theta^*$ , while  $\theta^*$  is better for other values of  $\theta$ . In other words, there is no overall winner. In particular, if we test the two sample problem  $H_0$ : F=G by using this model, i.e., testing  $H_0$ :  $\theta$ =1, the estimator  $\theta^*$  is preferred.

TABLE 4.1 Asymptotic variances of  $\theta$  and  $\theta^*$ for the Lehmann alternative model  $H(x;\theta) = x^{\theta}$ .

| $\lambda = 1/2$ $\lambda = 2/3$ $0.120$ $\sigma_0^2 = 0.141$ |
|--------------------------------------------------------------|
| $\sigma_0^2 = 0.141$                                         |
| _                                                            |
| 0.135 $\sigma_1^2 = 0.188$                                   |
| $\sigma_0^2 = 1.860$                                         |
| .463 $\sigma_1^2 = 1.772$                                    |
| $\sigma_0^2 = 6.949$                                         |
| $\sigma_1^2 = 6.000$                                         |
| 4.24 $\sigma_0^2 = 15.96$                                    |
| 0                                                            |
|                                                              |

#### 5. REFERENCES

Begun, J. M., Hall, W. J., Huang, W. M. and Wellner, J. A. (1983). 'Information and asymptotic efficiency in parametric-nonparametric models', Ann. Statist. 11, pp. 432 - 452.

Brooks, R. J.(1974). 'Bayesian analysis of the two-sample problem under the Lehmann alternatives', Biometrika, 61, pp. 501 - 507.

Cox, D. R. (1972). 'Regression models and life tables', J. Roy. Statist. Soc. B34,

pp. 187 - 220.

Fukui, M. and Miura, R.(1988). 'Kolmogrov-Smirnov estimation for the generalized Lehmann alternative models: two sample problem', in K. Matusita(ed.), Statistical Theory and Data Analysis II, Elsevier Science Publisher B. V. (North-Holland), pp. 101 - 110.

Lehmann, E. L.(1953). 'The power of rank tests', Ann. Math. Statist. pp. 23 - 43.

Lehmann, E. L.(1975). 'Nonparametrcs: statistical methods based on ranks',

Holden-Day, San Francisco. Savage, I. R. (1980). 'Lehmann alternatives', in B. V. Gnedenko, M. L. Puri and I. Vincze (eds.), Nonparametric Statistical inference II, North-Holland Publishing Company, pp. 795 - 821.

Young, D. H.(1973). 'Distributions of some censored rank statistics under Lehmann alternatives for the two sample case', Biometrika, 60, pp. 543 - 549.