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ABSTRACT. The estimation problem in a semiparametric model , namely, the
generalized Lehmann alternative model, is considered here. Suppose that two
independent samples Xl,...,Xm and Yl""’Yn with d.f.’s F and G, respectively, are

observed. Assume that G(-)=H(F(-);#), where the form of the function H is
known, but F and the parameter @ are unknown. The problem is to estimate 0 in
the presence of the nuisance function F. We give two methods of estimating the
parametric component of the model based on sample quantiles and the
Mann-Whitney statistic. The asymptotic variances of these estimators are
compared.

1. Imntroduction

Semiparametric models have become an active research topic in recent years. In
such a model, there exist both parametric and nonparametric components. For
example, Begun, Hall, Huang and Wellner(1983) study the model in which
xl""’Xn are i.i.d. with density f=f(-;0,g) with respect to Lebesgue measure y on

the real line, where @ is a real number and g belongs to a class of densities
sufficiently small that 4 is identifiable. There is considerable literature on the well
known Lehmann alternatives(Lehmann(1953)). See, for example, Young(1973),
Brooks(1974) and Savage(1980).

Fukui and Miura(1988) consider the estimation problem in the following two
sample semiparametric model. Let XX, beii.d. random variables(r.v.’s) with

distribution function(d.f.) F and let Yy, Y ) be iid. rv’s with df G(.) =

H(F(-);6), where {H(x;0): f¢(a,b)} is a known family of d.f.’s on [0,1], while the
true value of the parameter 4 as well as the function F are unknown. It is desired
to estimate # in the presence of the nuisance function F. This semiparametric
model is known as the generalized Lehmann alternative model since Lehmann

alternative is a special case of this corresponding to H(x;0) = xg. We now briefly
review the work of Fukui and Miura (1988@:

Since G(x) = H(F(x);0), then F(x) = H(G(x);f). Let D__(0) denote the
Kolmogorov-Smirnov distance
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D .(6)= szp IiFm(x) - H-l(Gn(x);0)i

where F_(x) and G, (x) are the empirical d.f.’s of F and G, respectively. The

minimum-distance estimator of @ is defined as the value @ of 0, which minimizeg
D (6). Fukui and Miura give the asymptotic distribution of this 0.

Theorem (Fukui and Miura). If m+n = N tends to infinity such that m/N — )
where 0< A< 1, then

P(N'/%0-0)¢y)

B, (t) By (H(t;0,)) 7 h(t;0,)

. By(t)  By(H(t;0)) hy(ti0)
+1:tlf[A1;2 -(1"‘)1/2}‘#*?%)+ht(t;ﬂo) y]20}

where

m'/2[F () - Pl - By(F), 012G, (x) - ()] — B,(G(x)),

B, (t) and B,(t) are independent Brownian bridges, h,(t;60) and h(t;0) are the
partial derivatives of H(t;6) with respect to t and 6, respectively. #

This limiting distribution is very complicated and does not seem to have a
normal approximation. Although Fukui and Miura give an algorithm to compute

this 0, it seems that a great deal of computation needs to be done before b can
finally be found.

Our aim in this paper is to develop some methods which will provide estimators
of @ involving less computational work while providing consistent estimation with
limiting normal distributions.

These results can also be applied to test the hypothesis H o &:80. Notice that
in many cases there exists a 0,€0, such that H(x; 00) = x. Thus

G(x) = H(F(x);()o) = F(x), so that it covers the usual two sample problem of
testing H('): F=G as a special case of testing H o 0= 00.
Although our results focus on a scalar 0, some results can be readily extended to

the case when @ is a vector. The following examples illustrate some applications of
the generalized Lehmann alternative models.

Example 1.1. The idea of proportional hazards was introduced by Cox(1972). If
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0.
X;,--»X,, are independent r.v.’s with X; having d.f. G(x)=1{1-F(x)] }, i=1,...,n,
then the ratio r(x,0,)/ r(x,{)j) does not depend on x, where
r(x,0) = G’(x)/ [1-G(x)] is the hazard function. This condition often appears to be
at least approximately satisfied in many biological applications.

Example 1.2. Consider a mixture problem in which the d.f. of the observations is
a linear combination of two d.f.’s F(x) and G(F(x)), i.e.,

H(F(x);8) = (1-0) G(F(x)) + 8 F(x), 0< 6 1.

Assume that F is unknown but G(-) is known. It is often important to estimate
the mixing parameter 4. If G also depends on an unknown parameter, then this is
an example of a model with vector parameter.

This paper is arranged as follows. Section 2 contains results about an estimator
d of 0 obtained by ma!;*ching the pth quantiles of the two samples. Section 3 deals
with an estimator # based on the Mann-Whitney statistic. In section 4,

*
comparison is made between # and 6 through examples. We will make the
following assumptions throughout:

Assumption A. F(x) is an absolutely continuous d.f. on R H(x;0) is a d.f. on
[0,1] for every 6=(8 ,...,ak)ee ch such that

In the case when @ is a real number, we may assume without loss of generality that
Al y g
7y < 0 so that h(x;0) is a strictly decreasing function of ¢. Furthermore, assume

that © = (a,b), where a and/or b may be infinity. Assume that H(x;a+)=1 and
H(x;b-)=0 for any x, 0< x <1. Assume that there exists a A, 0< A< 1, such that
m/N — ) as m—w, n—e, where N=m+n is the fotal of the two sample sizes.

2. Estimation Based On Sample Quantiles

Let Xi<- < Xﬁl and Yi< e < YI’1 be the order statistics of the X and Y

samples, respectively. For a fixed positive number p, 0< p< 1, the sample pth
quantile of the Y sample is defined as Y'Ilp 41 Let {p denote the population pth

quantile of Y, then G({p) = H(F(ﬁp);ﬂ) = p. Substituting estimators Y'[np]Jr] for

{p, and the empirical d.f. Fm for F, we may write, approximately,
H(Fm(Y[np] +1);0) = p. Let X{ be the largest observation in the X sample such
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that X ¢ Yi np|+1 When N=m+n is large, we would e:fpect Fm(Yinp]-H) 0 be

very close to Fm(xl'{) = k/m. Hence, our estimator @ is the solution ¢, the
equation

H( k/m;0) = p (2.1)
By Assumption A, -g% < 0 and H(x;a+)=1, H(x;b-)=0. This guaranteeg the
N *
existence and uniqueness of §. For brevity we write Y, for anp] 41 Let

Cp: F(¢ p) and let Hél(z,p) be the solution to the equation H(z;6)=p with Tespect
to ¢ for all z and p, such that 0< z< 1, 0< p< 1. Let hl(z;()) and h,(z;6) denote
the partial derivatives of H(z;d) with respect to z and 6, respectively. Thus

p -1

0 =Hy (F_(Y,)p) and

NY2(0) = NP G E (V) 0) - B (G 0) )

_ N1/2 ol Hél(x’P)ix= ¢ [ Fm(Y;) - Gl +op(1)

hy(¢i0)  q/om *
=@y _]1_;@1;;_03 m1/2 2 (10X V) - ¢l +0,(1). (22)

i=

The last equality indicates that it suffices to find the limiting distribution of

v _-1/2% *
Ay=m iﬁl[x(xigyn)-gp].

Applying the probability integral transformation F on both samples, Xl,...,Xm
become Uy,...,Up,, an iid. sample from the uniform distribution on [0,1], and
Y-, Y, become 2,,..,2,, an ii.d. sample with d.f. H(z;6). Although the values
of Ul""’Um and Zl""’Zn are unknown because F is unknown, the order relations
in the combined samples remain the same since F is strictly increasing. Thus AN

can also be written as
-1/2 m *
Ay=m/ 2 (U 2,) - ¢,

*
where Zn e Zinp]+1'
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Lemma 1. Let {Xi’ i=1,...,n} be a sequence of continuous r.v.’s with continuous
probability density function f(x). Let Hy denote the population pth quantile and

*
X, the sample pth quantile. Suppose that My is unique with f(up) positive. Then
*
the sequence of the random variables n1 / 2(Xn-pp) has asymptotically a normal

R . A . 2
distribution with mean zero and variance 7°, where

7'2 = 2(1-p)_ . #
[£(u))?
p
Lemma 2. Under Assumption A, if 4 is the true value of the parameter, then AN

has a limiting normal distribution with mean zero and variance 7, where

2 2 A p(1-p)
= eateln .
0T T () ny (¢

Proof: Define
-1/2M 1/2, ., *
By =m"/ 3 (U ¢) - ¢l +m Iz, - )

Since the first term of By is the sums of i.i.d. r.v.’s, by the Lindeberg-Levy central
limit theorem, it has an asymptotic normal distribution with mean zero and
variance T%= (p(l-(p). By Lemma 1, the second term of By has a limiting normal
distribution with mean zero and variance

2-__Ap(l-p)
(1-0) Iy (¢ 01

*
Since Ui and Zn are independent, the two limiting normal distributions are also
independent of each other. Hence By has a limiting normal distribution with mean

zero and variance 'rg. It can be verified that E(AN—BN)z—v 0. So that Ay and By
have the same asymptotic distribution. #

Now from Lemma 2 and (2.2), we obtain

Theorem 1. Assume 6 is the true value of the parameter, then under Assumption
2
(

A, the asymptotic distribution of the sequence of random variables Nl/ 0-0) has




0

a normal distribution with mean zero and variance 0(2), where
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h2 0 1-
02 = [hy(¢ ;)] 2 | 1% ;)fp( @, p{Lop)), (2.3)
It Zp is the pth quantile of H with this 4 substituted for 6, i.c., Zp is the solutiop
of .
p = H(( ;)
and

g e g WO (1
P = (g T2 ) | al1p) )

then it is easily verified that Nt/ 2( 0-0)/ o is asymptotically N(0,1). One can also
use this result to obtain asymptotic confidence limits for the unknown 4.

this result can also be used to test the hypothesis H: 0=00. To improve the

performance of the test statistic, one should minimize ag. (2.3) indicates that 0(2)
depends on the quantities p, 00, A and the function H(x; 00). All those quantities
except p have been specified at the time of testing. However, we can chooge an
optimal value P, so that 0(2) is minimized for the given values 00, A and the
function H(x; d,)- Thus the optimal estimator and the optimal test is to use this p
in the quantile matching method.

Example 2.1. Suppose that H(x; 0) = x0. Solving the equation

[P (Y1 =»p
we get X .
0= [tn p]/ In[F_(Y)).

According to Theorem 1, Var( b) = N'log + o(N '1). To compute 0(2), we find

h(x;6) = 0x0'1, hy(x;6) = %10 X, Hy = pl/o.

Substituting these into (2.3), we have after some simplification

2o /0 ., A(1- 2.4)
v L :
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3. Estimation Based on the Mann-Whitney Statistic

~ *
In section 2, the estimator 4 is developed based on the statistic involving Fm(Yn)’

*
the value of the empirical d.f. F m Y. This motivates us to consider the

statistic

the average of the empirical d.f. F  at all the n Y observations. By the definition
of the empirical d.f. Fm, W‘f}' can be written as

1
=— E 2 I(X<Y,)
xy mn fsigi=i i
where I(-) is the indicator function. Notice that ny= l'wyx’ where

E ¥ I(Y.<X .
= 1J1( <X). (31)

We will study the statistic W which is known as the Mann-Whitney statistic,

a special case of a U-statistic. If we apply the probability integral transformation F
on both X and Y samples, W L can be expressed as

w I(Z. .
e nmlgljzl( <Uy. (3.2)

Let
1
M, () = E[1(Z,< U}) | = jo H(u;6) du (3.3)
be the expectation of Wy Under Assumption A, it is clear that M1(0) is a
differentiable function. Since W is a consistent and asymptotically

normal(CAN) estimator for M, (6), we propose an estimator 0" of 0 as

0 = M7 (W), (3.4)

Ai in s:action 2, we will study the asymptotic behavior of the random variables
N /2(6' -0) when the true value of the parameter is 0. Using the mean value
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theorem, we have, from (3.4),
NY2(6"-0) = pay (o) NPW -y (0] + 0 (1), (33)

Define My(0) = PfZ;< Uy, Z;< Up), My(6) = PyZ;< Uy, Zy< U,). Using
conditional probabilities, M, () and M4(6) can be expressed as

1
My(0) = 2 (1) B du, (3.6)
1
M,(6) = JOHz(u;G) du . (3.7)

Theorem 2. Suppose that Assumption A holdE. If 6 is the true value of the |
parameter, then the random sequence Nl/ 2(6‘ -f) has an asymptotic norma]
distribution with mean zero and variance a%, where ‘

o2 = My(o% 2 |
7 = 3 My(0) + i My(0) -k M) (3.8) |

Proof: From the theory of U-statistics ( see for example, Lehmann(1975) ), using ‘
expressions (3.3), (3.6) and (3.7) we have

Var(W_ ) = g { M (0)1-M, (0)] + (n-1)[My(0)-M3(0) |

+ (m-1)[M,(6)-M3(8)] }.

Notice that
%‘1 - A, 1% — 1-), as N—q,
50
1/2 2
Var [N/ (W My (0] = 75

It is well known that the limiting distribution of the statistic N/ 2[wyx- M, ()]

is normal with mean zero and variance 'rf. Hence by (3.5), the limiting

distribution of N1/2(0*-00) is N(O,af). #
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Example 3.1. Suppose that H(x;6) = x0_ Then
_ 1 _ 2 _ 1
M (O)=gr1.  MoO=mmyoryy, Ma(0= 2371
Hence
- -1 *_ -1 2
0 = [Wyx] -1 and Var(d )= 1+ o(N° )
with
1
= (0+1)* [ 301y + (EANOHTOR2 aaNEE
= ( 20+1 2 M) ()2 .

2 *
4. The Comparison between @ and 4.

B *
Between the two estimators 8 and ¢ , we should prefer the one with smaller
asymptotlc variance. In Theorems 1 and 2 we have given the asymptotic variances

of 0 and # , denoted by 02 and 01, respectively. Furthermore, in Examples 2.1 and

0. The specific expressions of

3.1, we derived estimators 8 and 6 when H(x;0) = x
ag and a% are given in (2.4) and (3.9). For a selected number of values of § and ),
we compute 0(2) and a%
optimal value of p. The results are listed in Table 4.1.

From Table 4.1, it is seen that for small values of , the estimator 9 is superior

*
to 0 , while @ is better for other values of §. In other words, there is no overall
wmner In particular, if we test the two sample problem H F=G by using this

Here 0(2) is the minimum variance corresponding to the

model, i.e., testing H o f=1, the estimator 0 is preferred.
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: *
TABLE 4.1 Asymptotic variances of # and §
for the Lehmann alternative model H(x;0) = x

A=1/3  A=1/2 A=2/3
g 2 2 2
0=0.1  gg=0121 ¢2=0120 o2=0.141
2 2 2
01—0.117 01—0.135 01—0.188
3 2 2 2
9=0.5 00—1.840 00—1.655 00—1.860
2 2 2
0j=1519  oi=1463 o?=1.772
N 2 2 2
=1 0;=6.049  o2=6177 o’=6.049
02=6.000 02=5.333  o2=6.000
1 1 1
2 2 2
0=15  0p=1601 o’=1424 ¢>=15.96
af=14.57 0:12=12.39 af=13.31
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